Classification of phase singularities for complex scalar waves
نویسنده
چکیده
Motivated by the importance and universal character of phase singularities which are clarified recently, we study the local structure of equi-phase loci near the dislocation locus of complex valued planar and spatial waves, from the viewpoint of singularity theory of differentiable mappings, initiated by H. Whitney and R. Thom. The classification of phase-singularities are reduced to the classification of planar curves by radial transformations due to the theory of A. du Plessis, T. Gaffney and L. Wilson. Then fold singularities are classified into hyperbolic and elliptic singularities. We show that the elliptic singularities are never realized by any Helmholtz waves, while the hyperbolic singularities are realized in fact. Moreover, the classification and realizability of Whitney’s cusp, as well as its bifurcation problem are considered in order to explain the three points bifurcation of phase singularities. In this paper, we treat the dislocation of linear waves mainly, developing the basic and universal method, the method of jets and transversality, which is applicable also to non-linear waves.
منابع مشابه
Geometry of phase and polarization singularities, illustrated by edge diffraction and the tides
In complex scalar fields, singularities of the phase (optical vortices, wavefront dislocations) are lines in space, or points in the plane, where the wave amplitude vanishes. Phase singularities are illustrated by zeros in edge diffraction and amphidromies in the heights of the tides. In complex vector waves, there are two sorts of polarization singularity. The polarization is purely circular o...
متن کاملThe Deterministic Generation of Extreme Surface Water Waves Based on Soliton on Finite Background in Laboratory
This paper aims to describe a deterministic generation of extreme waves in a typical towing tank. Such a generation involves an input signal to be provided at the wave maker in such a way that at a certain position in the wave tank, say at a position of a tested object, a large amplitude wave emerges. For the purpose, we consider a model called a spatial-NLS describing the spatial propagation o...
متن کاملSolution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar
The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...
متن کاملSingularities in the complex physical plane for deep water waves
Deep water waves in two-dimensional flow can have curvature singularities on the surface profile, for example, the limiting Stokes wave has a corner of 2π/3 radians and the limiting standing wave momentarily forms a corner of π/2 radians. Much less is known about the possible formation of curvature singularities in general. A novel way of exploring this possibility is to consider the curvature ...
متن کاملHigh-frequency nonlinear acoustic beams and wave packets
Gaussian beams and wave packets are formally equivalent to high-frequency solutions of the linear wave equation with complex-valued phase functions. The theory of weakly nonlinear high-frequency waves is extended in this paper to allow for complex phase solutions. The procedure is similar to nonlinear geometrical optics and the nonlinearity causes the phase to vary, leading to the development o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006